Review of AES Methods and Suggested Abstract Ciphering for Secured Image Data Communication in IoT and AI Applications
Full text | |||
Source | Journal of Information Systems Security Volume 19, Number 3 (2023)
Pages 169–182
ISSN 1551-0123 (Print)ISSN 1551-0808 (Online) |
||
Authors | Haneen Dweik — Palestine Polytechnic University, Palestine
Mohammed Abutaha — Palestine Polytechnic University, Palestine
Adnane Cabani — Normandie Univ, UNI Rouen, ESIGELEC, IRSEEM, 76000 Rouen, France
Karim Hammoudi — Université de Haute-Alsace, IRIMAS, Mulhouse, France; Université de Strasbourg, France
|
||
Publisher | Information Institute Publishing, Washington DC, USA |
Abstract
This paper presents a brief review of ciphering methods for secure image communications in the contexts of Internet of Things (IoT) and artificial intelligence. With the rapid advancements in mobile computing and the diversity of public data storing devices, ensuring robust security mechanisms has become a critical area of focus. We acknowledge the importance of historical context and the evolution of encryption/decryption approaches, and we aim to establish a systematic understanding of lightweight image encryption in IoT applications. To this end, a use case for AES image encryption will be highlighted to provide practical insights. Moreover, an abstract ciphering approach is suggested towards limiting the imagerelated de-anonymization attacks which can occur over publicly shared trained image sets.
Keywords
Internet of Things (IoT), Lightweight Cryptography, Image Encryption, Image Decryption, Advanced Encryption Standard (AES), Artificial Intelligence, Image De-anonymization, Security.
References
Alaba, F. A., Othman, M., Hashem, I. A. T., and Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 88, 10–28. doi:10.1016/j.jnca.2017.04.002
Alshammari, B. M., Guesmi, R., Guesmi, T., Alsaif, H., and Alzamil, A. (2021). Implementing a Symmetric Lightweight Cryptosystem in Highly Constrained IoT Devices by Using a Chaotic S-Box. Symmetry, 13(1), 129. doi:10.3390/sym13010129
Alshehri, F., and Muhammad, G. (2021), A Comprehensive Survey of the Internet of Things (IoT) and AI-Based Smart Healthcare. IEEE Access, 9, 3660-3678. doi:10.1109/ACCESS.2020.3047960
Bogdanov, A., Khovratovich, D., and Rechberger, C. (2011). Biclique Cryptanalysis of the Full AES. D. H. Lee and X. Wang (Eds.), Advances in Cryptology – ASIACRYPT 2011 (pp. 344–371). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-25385-0_19
Chowdhary, C. L., Patel, P. V., Kathrotia, K. J., Attique, M., Perumal, K., and Ijaz, M. F. (2020a). Analytical Study of Hybrid Techniques for Image Encryption and Decryption. Sensors, 20(18), 5162. doi: 10.3390/s20185162
Chowdhary, C. L., Patel, P. V., Kathrotia, K. J., Attique, M., Perumal, K., and Ijaz, M. F. (2020b). Analytical Study of Hybrid Techniques for Image Encryption and Decryption. Sensors, 20(18), 5162. doi: 10.3390/s20185162
Daemen, J. and Rijmen, V. (2002). The data encryption standard. The Design of Rijndael: AES—The Advanced Encryption Standard, 81–87.
Device (ZigBee) Security Study. (2020). HKCERT. Dhanda, S. S., Singh, B., and Jindal, P. (2020). Lightweight Cryptography: A Solution to Secure IoT. Wireless Personal Communications, 112(3), 1947–1980. doi:10.1007/s11277-020-07134-3
Dworkin, M. J. (2023). Advanced Encryption Standard (AES) (NIST FIPS 197-upd1; p. NIST FIPS 197-upd1). Gaithersburg, MD: National Institute of Standards and Technology. doi: 10.6028/NIST.FIPS.197-upd1
Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., and Uhsadel, L. (2007). A Survey of Lightweight-Cryptography Implementations. IEEE Design & Test of Computers, 24(6), 522–533. doi: 10.1109/MDT.2007.178
Hammoudi, K., Abu Taha, M., Benhabiles, H., Melkemi, M., Windal, F., El Assad, S., and Queudet, A. (2020). Image-Based Ciphering of Video Streams and Object Recognition for Urban and Vehicular Surveillance Services. X.-S. Yang, S. Sherratt, N.
Dey, and A. Joshi (Eds.), Fourth International Congress on Information and Communication Technology (pp. 519–527). Singapore: Springer. doi: 10.1007/978-981-32-9343-4_42
Hammoudi, K., Benhabiles, H., Melkemi, M., and Dornaika, F. (2018). Detection Systems for Improving the Citizen Security and Comfort from Urban and Vehicular Surveillance Technologies: An Overview. In A. Longo, M. Zappatore, M. Villari, O. Rana, D. Bruneo, R. Ranjan, M. Fazio, and P. Massonet (Eds.), Cloud Infrastructures, Services, and IoT Systems for Smart Cities (Vol. 189, pp. 37–45). Cham: Springer International Publishing. doi: 10.1007/978-3-319-67636-4_5
Hammoudi, K., Cabani, A., Melkemi, M., Benhabiles, H., and Windal, F. (2018). Towards a Model of Car Parking Assistance System Using Camera Networks: Slot Analysis and Communication Management. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 1248–1255. doi:10.1109/HPCC/SmartCity/DSS.2018.00210
Harbi, Y., Aliouat, Z., Refoufi, A., and Harous, S. (2021). Recent Security Trends in Internet of Things: A Comprehensive Survey. IEEE Access, 9, 113292–113314. doi:10.1109/ACCESS.2021.3103725
IEEE Std 802.11i-2004. (2004). IEEE Standard for information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 6:Medium Access Control (MAC) Security Enhancements. IEEE Std 802.11i-2004, 1–190. doi: 10.1109/IEEESTD.2004.94585
Jena, B. K. (2021, July 27). What Is AES Encryption and How Does It Work? - Simplilearn. Simplilearn.Com. Retrieved from https://www.simplilearn.com/tutorials/cryptography-tutorial/aes-encryption Ji, B., Wang, L., and Yang, Q. (2014). New Version of AES-ECC Encryption System Based on FPGA in WSNs. Journal of Software Engineering, 9(1), 87–95. doi:10.3923/jse.2015.87.95
Kansal, S. and Mittal, M. (2014). Performance evaluation of various symmetric encryption algorithms. 2014 International Conference on Parallel, Distributed and Grid Computing, 105–109. doi: 10.1109/PDGC.2014.7030724
Kasraoui, M., Cabani, A., and Chafouk, H. (2014). IKEv2 Authentication Exchange Model in NS-2. 2014 International Symposium on Computer, Consumer and Control, 1074–1077. doi: 10.1109/IS3C.2014.280
Kasraoui, M., Cabani, A., and Chafouk, H. (2015). Collaborative Key Exchange System Based on Chinese Remainder Theorem in Heterogeneous Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 11(11), 159518. doi:10.1155/2015/159518
Kaufman, C. (2005). Internet Key Exchange (IKEv2) Protocol (No. RFC4306; p. RFC4306). RFC Editor. doi: 10.17487/rfc4306 Hosny, K. M., Zaki, M. A., Lashin, N. A., Fouda, M. M., and H. M. Hamza (2023), Multimedia Security Using Encryption: A Survey. IEEE Access, 11, 63027-63056, doi:10.1109/ACCESS.2023.3287858.
Naif, J. R., Abdul-Majeed, G. H., and Farhan, A. K. (2019). Secure IOT System Based on Chaos-Modified Lightweight AES. 2019 International Conference on Advanced Science and Engineering (ICOASE), 1–6. doi:10.1109/ICOASE.2019.8723807
Nasraoui, L., Cabani, A., and Trimech, H. (2022). Implementing lightweight key exchange solutions for WSN with LoRa connectivity. International Journal of Sensor Networks, 39(3), 192–204. doi: 10.1504/ijsnet.2022.124569 Padgette, J., Bahr, J., Batra, M., Holtmann, M., Smithbey, R., Chen, L., and Scarfone, K. (2022). Guide to Bluetooth Security. National Institute of Standards and Technology. doi:10.6028/NIST.SP.800-121r2-upd1
Rana, M., Mamun, Q., and Islam, R. (2022). Lightweight cryptography in IoT networks: A survey. Future Generation Computer Systems, 129(C), 77–89. doi:10.1016/j.future.2021.11.011
Rana, S., Hossain, S., Imam, H., and Mohammod, Dr. (2018). An Effective Lightweight Cryptographic Algorithm to Secure Resource-Constrained Devices. International Journal of Advanced Computer Science and Applications, 9(11). doi:10.14569/IJACSA.2018.091137
Rescorla, E. (2018). The Transport Layer Security (TLS) Protocol Version 1.3 (No. RFC8446; p. RFC8446). RFC Editor. doi: 10.17487/RFC8446
Rivest, R. (1992). The RC4 encryption algorithm. Retrieved from https://www.semanticscholar.org/paper/The-RC4-encryption-algorithm-Rivest/5cf82e8c4a43f467b05fa956b2b130efbcbf40c9
Stallings, W. (2017). Cryptography and network security: principles and practice (Seventh edition). Boston Munich: Pearson.