Quantifying the Effectivenness of Intrusion Detection Systems in Operation through Domain Experts
Full text | |||
Source | Journal of Information Systems Security Volume 10, Number 2 (2014)
Pages 3–35
ISSN 1551-0123 (Print)ISSN 1551-0808 (Online) |
||
Authors | Teodor Sommestad — The Royal Institute of Technology (KTH), Sweden
Hannes Holm — The Royal Institute of Technology (KTH), Sweden
Mathias Ekstedt — The Royal Institute of Technology (KTH), Sweden
Nicholas Honeth — The Royal Institute of Technology (KTH), Sweden
|
||
Publisher | Information Institute Publishing, Washington DC, USA |
Abstract
An intrusion detection system (IDS) is a security measure that can help system administrators in enterprise environments detect attacks made against computer networks. In order to be a good enterprise security measure, the IDS solution should be effective when it comes to making system operators aware of on-going cyber-attacks. However, it is difficult and costly to evaluate the effectiveness of IDSs by experiments or observations. This paper describes the result of an alternative approach to studying this topic. The effectiveness of 24 different IDS solution scenarios pertaining to remote arbitrary code exploits is evaluated by 165 domain experts. The respondents’ answers were then combined according to Cooke’s classical method, in which respondents are weighted based on how well they perform on a set of test questions. Results show that the single most important factor is whether either a host-based IDS, or a network-based IDS is in place. Assuming that either one or the other is in place, the most important course of action is to tune the IDS to its environment. The results also show that an updated signature database influences the effectiveness of the IDS less than if the vulnerability that is being exploited is well-known and is possible to patch or not.
Keywords
Intrusion Detection System, Security Architecture, Expert Judgment, Incident Handling, Signature-based Detection
References
Abdolmohammadi, M. J., & Shanteau, J. (1992). Personal attributes of expertauditors. Organizational Behavior and Human Decision Processes, 53(2),158–172.
Alserhani, F., Akhlaq, M., Awan, I. U., Mellor, J., Cullen, A. J., & Mirchandani,P. (2009). Evaluating Intrusion Detection Systems in High Speed Networks.2009 Fifth International Conference on Information Assurance and Security,454–459. doi:10.1109/IAS.2009.276
Anderson, J. P. (1980). Computer security threat monitoring andsurveillance. Forth Washington: Technical report, James P. Anderson
Company, Fort Washington, Pennsylvania.
Ashfaq, A., Robert, M., Mumtaz, A., Ali, M., Sajjad, A., & Khayam, S. (2008). A comparative evaluation of anomaly detectors under portscan attacks. In Recent Advances in Intrusion Detection (pp. 351–371). Springer. Retrieved from http://www.springerlink.com/index/x8643207t2174l34.pdf
Ashton, A. H. (1985). Does consensus imply accuracy in accounting studies of decision making? The Accounting Review, 60(2), 173–185.
Axelsson, S. (2000a). Intrusion detection systems: A survey and taxonomy. Technical Report (Vol. 99, pp. 1–15). Göteborg, Sweden.
Axelsson, S. (2000b). The base-rate fallacy and the difficulty of intrusion detection. ACM Transactions on Information and System Security, 3(3), 186–205. doi:10.1145/357830.357849
Barry, B. I. A., & Chan, H. A. (2010). Intrusion detection systems. In P. Stavroulakis & M. Stamp (Eds.), Handbook of Information and Communication Security (Vol. 2001, pp. 193–205). Springer. doi:10.1016/S1361-3723(01)00614-5
Biermann, E. (2001). A comparison of Intrusion Detection systems. Computers & Security, 20(8), 676–683. doi:10.1016/S0167-4048(01)00806-9
Bolger, F., & Wright, G. (1994). Assessing the quality of expert judgment: Issues and analysis. Decision Support Systems, 11(1), 1–24. doi:10.1016/0167-9236(94)90061-2
Cavusgil, S. T., & Elvey-Kirk, L. A. (1998). Mail survey response behavior: A conceptualization of motivating factors and an empirical study. European Journal of Marketing, 32(11/12), 1165–1192. doi:10.1108/03090569810243776
Clemen, R. T., & Winkler, R. L. (1999). Combining probability distributions from experts in risk analysis. Risk Analysis, 19(187), 187–204.
Cooke, R. M. (1991). Experts in Uncertainty: Opinions and Subjective Probability in Science. New York, New York, USA: Open University Press.
Cooke, R. M. (2008). TU Delft expert judgment data base. Reliability Engineering & System Safety, 93(5), 657–674. doi:10.1016/j.ress.2007.03.005
Cooke, R. M., & Goossens, L. (2004). Expert judgement elicitation for risk assessments of critical infrastructures. Journal of Risk Research, 7(6), 643–656. From http://www.ingentaconnect.com/content/routledg/rjrr/2004/00000007/00000006/art00008
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. doi:10.1007/BF02310555
Cronbach, L. J., & Shavelson, R. J. (2004). My Current Thoughts on Coefficient Alpha and Successor Procedures. Educational and Psychological Measurement, 64(3), 391–418. doi:10.1177/0013164404266386
Denning, D. E. (1987). An Intrusion-Detection Model. IEEE Transactions on Software Engineering, SE-13(2), 222–232. doi:10.1109/TSE.1987.232894
Faysel & Haque. (2010). Towards Cyber Defense: Research in Intrusion Detection & Intrusion Prevention Systems. Journal of Computer Science, 10(7), 316–325.
Fink, A., Kosecoff, J., Chassin, M., & Brook, R. H. (1984). Consensus methods: characteristics and guidelines for use. American Journal of Public Health, 74(9), 979–983. doi:10.2105/AJPH.74.9.979
Garciateodoro, P., Diazverdejo, J., Maciafernandez, G., & Vazquez, E. (2009). Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers & Security, 28(1-2), 18–28. doi:10.1016/j.cose.2008.08.003
Garthwaite, P. H., Kadane, J. B., & O’Hagan, A. (2005). Statistical methods for eliciting probability distributions. Journal of the American Statistical Association, 100(470), 680–701.
Goodall, J. R., Lutters, W. G., & Komlodi, A. (2009). Developing expertise for network intrusion detection. Information Technology & People, 22(2),92–108. http://www.emeraldinsight.com/journals.htm?articleid=1793305&show=abstract
Holm, H. (2014). Signature Based Intrusion Detection for Zero-Day Attacks: (Not) A Closed Chapter? In 2014 47th Hawaii International Conference on System Sciences (pp. 4895–4904). Big Island, HI, United states: IEEE. doi:10.1109/HICSS.2014.600
Holm, H., Sommestad, T., Ekstedt, M., & Honeth, N. (2013). Indicators of expert judgement and their significance: an empirical investigation in the area of cyber security. Expert Systems, (Accepted), n/a–n/a. doi:10.1111/exsy.12039
Itoh, T., Takakura, H., Sawada, A., & Koyamada, K. (2006). Visualization of Network Intrusion Detection Data. IEEE Computer Graphics and Applications, 26(2), 40–47.
Julisch, K., & Dacier, M. (2002). Mining intrusion detection alarms for actionable knowledge. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 366–375). New York, New York, USA: ACM. doi:10.1145/775094.775101
Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80(4), 237–251. doi:10.1037/h0034747
Kanoun, W., Cuppens-Boulahia, N., Cuppens, F., Dubus, S., & Martin, A. (2009). Success Likelihood of Ongoing Attacks for Intrusion Detection and Response Systems. 2009 International Conference on Computational Science and Engineering, 83–91. doi:10.1109/CSE.2009.233
Krayer von Krauss, M. P., Casman, E. a, & Small, M. J. (2004). Elicitation of expert judgments of uncertainty in the risk assessment of herbicide-tolerant oilseed crops. Risk Analysis: An Official Publication of the Society for Risk Analysis, 24(6), 1515–27. doi:10.1111/j.0272-4332.2004.00546.x
Ktata, F. B., Kadhi, N. El, & Ghédira, K. (2009). Agent IDS based on Misuse Approach. Journal of Software, 4(6), 495–507. doi:10.4304/jsw.4.6.495-507
Lin, S. (2008). A study of expert overconfidence. Reliability Engineering & System Safety, 93(5), 711–721. doi:10.1016/j.ress.2007.03.014
McFadzean, E., Ezingeard, J.-N., & Birchall, D. (2011). Information Assurance and Corporate Strategy: A Delphi Study of Choices, Challenges, and Developments for the Future. Information Systems Management, 28(2), 102–129. doi:10.1080/10580530.2011.562127
McHugh, J. (2000). Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory. ACM Transactions on Information and System Security, 3(4), 262–294. doi:10.1145/382912.382923
Mell, P., Hu, V., Lippmann, R., Haines, J. W., & Zissman, M. (2003). An overview of issues in testing intrusion detection systems, (NIST IR 7007). Citeseer. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.5163
Mell, P., Scarfone, K., & Romanosky, S. (2007). A complete guide to the common vulnerability scoring system version 2.0. Published by FIRST-Forum of Incident Response and Security Teams. Retrieved Jan. 2014 from http://www.first.org/cvss/cvss-guide.pdf
Montgomery, D. C. (2008). Design and analysis of experiments. Hoboken, NJ: John Wiley & Sons Inc.
NIST Computer Security Resource Center (CSRC). (2011). National Vulnerability Database. Retrieved February 13, 2011, from www.nvd.nist.org
Salah, K., & Kahtani, a. (2009). Improving Snort performance under Linux. IET Communications, 3(12), 1883. doi:10.1049/iet-com.2009.0114
Scarfone, K., & Mell, P. (2007). Guide to intrusion detection and prevention systems. Nist Special Publications (Vol. 800). Gaithersburg, MD, USA.
Shaikh, S., Chivers, H., Nobles, P., Clark, J., & Chen, H. (2008). Characterising intrusion detection sensors. Network Security, 2008(9), 10–12. doi:10.1016/S1353-4858(08)70107-7
Shanteau, J., Weiss, D. J., Thomas, R. P., & Pounds, J. C. (2002). Performance-based assessment of expertise: How to decide if someone is an expert or not. European Journal of Operational Research,136(2), 253–263. doi:10.1016/S0377-2217(01)00113-8
Sommestad, T., & Hunstad, A. (2013). Intrusion detection and the role of the system administrator. Information Management & Computer Security, 21(1), 30 – 40. doi:10.1108/09685221311314400
Sumner, M. (2009). Information Security Threats: A Comparative Analysis of Impact, Probability, and Preparedness. Information Systems Management, 26(1), 2–12. doi:10.1080/10580530802384639
Thompson, R. S., Rantanen, E. M., & Yurcik, W. (2006). Network intrusion detection cognitive task analysis: Textual and visual tool usage and recommendations. In Human Factors and Ergonomics Society Annual Meeting Proceedings (Vol. 50, pp. 669–673). Human Factors and Ergonomics Society. www.ingentaconnect.com/content/hfes/hfproc/2006/00000050/00000005/art00011
Thompson, R. S., Rantanen, E. M., Yurcik, W., & Bailey, B. P. (2007). Command line or pretty lines?: comparing textual and visual interfaces for intrusion detection. In Proceedings of the SIGCHI conference on Human factors in computing systems (p. 1205). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1240807
Wang, K., Cretu, G., & Stolfo, S. (2006). Anomalous Payload-Based Worm Detection and Signature Generation. In Recent Advances in Intrusion Detection (pp. 227–246). Springer. From http://www.springerlink.com/index/75h308806288v3p1.pdf
Weiss, D. J. D. J., & Shanteau, J. (2003). Empirical Assessment of Expertise. Human Factors: The Journal of the Human Factors and Ergonomics Society, 45(1), 104–116. doi:10.1518/hfes.45.1.104.27233
Werlinger, R., Hawkey, K., Muldner, K., Jaferian, P., & Beznosov, K. (2008). The challenges of using an intrusion detection system: is it worth the effort? SOUPS ’08 Proceedings of the 4th Symposium on Usable Privacy and Security, (1), 107–118. From http://portal.acm.org/citation.cfm?id=1408679
Xenakis, C., Panos, C., & Stavrakakis, I. (2010). A comparative evaluation of intrusion detection architectures for mobile ad hoc networks. Computers & Security, 30(ii), 1–18. doi:10.1016/j.cose.2010.10.008
Young, G., & Pescatore, J. (2009). Magic quadrant for network intrusion prevention system appliances. Retrieved from http://www.adexsus.com/v2/pdf/Detectores de Intrusos/Gartner/CuadranteMagico.pdf
Zirkle, L. (2008). What is host-based intrusion detection? Intrusion Detection FAQ. From http://www.sans.org/security-resources/idfaq/host_based.php